## **Tool and Stainless Steel**

### 316L (1.4404)

316L is a stainless steel known for good hardness with a high ductility. 316L has versatile applications where corrosion-resistance is important, such as in medical technologies, the automotive industry as well as in aerospace engineering.

### Chemical Composition (nominal), %

| Element / Material <sup>1</sup> | Fe   | Cr               | Ni               | Мо          | Mn   | Si   | Р     | S     | С     | N    | 0    |
|---------------------------------|------|------------------|------------------|-------------|------|------|-------|-------|-------|------|------|
| 316L (1.4404) 10-45 μm          | Bal. | 16.00 -<br>18.00 | 10.00 -<br>14.00 | 2.00 - 3.00 | 2.00 | 1.00 | 0.045 | 0.030 | 0.030 | 0.10 | 0.04 |

| Mechanical<br>Data <sup>2</sup> | Formula Symbol and Unit | As-Built <sup>3</sup> | Heat Treated |
|---------------------------------|-------------------------|-----------------------|--------------|
| Tensile strength                | R <sub>m</sub> [MPa]    | 620                   | 575          |
| Offset yield strength           | R <sub>P0,2</sub> [MPa] | 505                   | 345          |
| Elongation at break             | A [%]                   | 43                    | 52           |
| Reduction of area               | Z [%]                   | 65                    | 65           |
| Young's modulus                 | E [GPa]                 | 180                   | 180          |
| Vickers hardness                | HV10                    | 210                   | 170          |
| Roughness average               | Ra [μm]                 | 10                    | -            |
| Mean roughness depth            | Rz [μm]                 | 70                    | -            |

# Material Characteristics Very good corrosion resistance High strength under elevated temperatures High ductility Typical Application Areas Aerospace / Automotive Surgical instruments Offshore installations Food industry

### 15-5PH (1.4545)

15-5PH is a stainless, martensitic, precipitation-hardening Cr-Ni-Cu steel that has excellent processability on SLM Solutions' additive manufacturing machines. 15-5PH is suitable for applications requiring high strength and hardness combined with moderate corrosion resistance. The alloy is the ferrite-free version of 17-4PH.

### Chemical Composition (nominal), %

| Element / Material <sup>1</sup> | Fe   | Cr               | Ni             | Cu             | Nb + Ta        | Mn   | Si   | Р    | S    | C    | N    | 0    |
|---------------------------------|------|------------------|----------------|----------------|----------------|------|------|------|------|------|------|------|
| 15-5PH (1.4545) 10-45 μm        | Bal. | 14.00 -<br>15.50 | 3.50 -<br>5.50 | 2.50 -<br>4.50 | 0.15 -<br>0.45 | 1.00 | 1.00 | 0.04 | 0.03 | 0.07 | 0.10 | 0.10 |

| Formula Symbol and Unit | As-Built <sup>3</sup>                                                                         | Heat Treated                                                                                                                                                                                                       |
|-------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R <sub>m</sub> [MPa]    | 1225                                                                                          | 1440                                                                                                                                                                                                               |
| R <sub>P0,2</sub> [MPa] | 860                                                                                           | 1290                                                                                                                                                                                                               |
| A [%]                   | 15                                                                                            | 10                                                                                                                                                                                                                 |
| Z [%]                   | 50                                                                                            | 30                                                                                                                                                                                                                 |
| E [GPa]                 | 180                                                                                           | 195                                                                                                                                                                                                                |
| HV10                    | 370                                                                                           | 455                                                                                                                                                                                                                |
| Ra [μm]                 | 25                                                                                            | -                                                                                                                                                                                                                  |
| Rz [μm]                 | 140                                                                                           | -                                                                                                                                                                                                                  |
|                         | and Unit  R <sub>m</sub> [MPa]  R <sub>P0,2</sub> [MPa]  A [%]  Z [%]  E [GPa]  HV10  Ra [μm] | and Unit         R <sub>m</sub> [MPa]       1225         R <sub>P0,2</sub> [MPa]       860         A [%]       15         Z [%]       50         E [GPa]       180         HV10       370         Ra [μm]       25 |

| <ul> <li>Precipitation hardenable</li> <li>Excellent tensile strength</li> <li>Moderate corrosion resistance</li> </ul> Typical Application Areas <ul> <li>Aerospace</li> <li>Medical</li> <li>Chemical / Petrochemical</li> </ul> | nterial Characteristics         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|
| <ul> <li>Moderate corrosion resistance</li> <li>Typical Application Areas</li> <li>Aerospace</li> <li>Medical</li> </ul>                                                                                                           | Precipitation hardenable        |  |
| Typical Application Areas  Aerospace  Medical                                                                                                                                                                                      | Excellent tensile strength      |  |
| <ul><li>Aerospace</li><li>Medical</li></ul>                                                                                                                                                                                        | Moderate corrosion resistance   |  |
| ■ Medical                                                                                                                                                                                                                          | • • •                           |  |
| - Medical                                                                                                                                                                                                                          | '                               |  |
| Chemical / Petrochemical                                                                                                                                                                                                           | Medical                         |  |
|                                                                                                                                                                                                                                    | Chemical / Petrochemical        |  |
| Paper / Metalworking industries                                                                                                                                                                                                    | Paper / Metalworking industries |  |

<sup>1</sup> Maximum values, unless stated otherwise as a range

<sup>2</sup> Process conditions and parameters according to SLM Solutions' standards

<sup>3</sup> Rounded mean values of identified layer thicknesses and different orientations (elongations at break are not rounded)

### 17-4PH (1.4542)

17-4PH is a martensitic precipitation-hardenable Cr-Ni-Cu-steel possessing high strength and toughness. A versatile material, it provides an outstanding combination of good corrosion resistance and mechanical properties at temperatures up to 320 °C and is suitable for heavy-strain applications, thanks to its high wear resistance.

### Chemical Composition (nominal), %

| Element / Material <sup>1</sup> | Fe   | Cr               | Ni             | Cu             | Mn   | Si   | Nb + Ta        | c    | N    | 0    | Р    | S    |
|---------------------------------|------|------------------|----------------|----------------|------|------|----------------|------|------|------|------|------|
| 17-4 PH (1.4542) 10-45 μm       | Bal. | 15.00 -<br>17.50 | 3.00 -<br>5.00 | 3.00 -<br>5.00 | 1.00 | 0.07 | 0.15 -<br>0.45 | 0.07 | 0.10 | 0.04 | 0.04 | 0.03 |

| Mechanical<br>Data <sup>2</sup> | Formula Symbol and Unit | As-Built <sup>3</sup> | Heat Treated |
|---------------------------------|-------------------------|-----------------------|--------------|
| Tensile strength                | R <sub>m</sub> [MPa]    | 940                   | 1270         |
| Offset yield strength           | R <sub>P0,2</sub> [MPa] | 500                   | 910          |
| Elongation at break             | A [%]                   | 25                    | 18           |
| Reduction of area               | Z [%]                   | 50                    | 40           |
| Young's modulus                 | E [GPa]                 | 165                   | 165          |
| Vickers hardness                | HV10                    | 230                   | 355          |
| Roughness average               | Ra [µm]                 | 10                    | -            |
| Mean roughness depth            | Rz [μm]                 | 60                    | -            |



### 1.2709

Tool steels such as 1.2709 are primarily used for manufacturing tools and molds. They are characterized by a high hardness combined with a high ductility. Their specific mechanical properties allow usage in high-stressed components due to its high wear resistance.

### Chemical Composition (nominal), %

| Element / Material <sup>1</sup> | Fe   | Ni      | Co     | Мо     | Ti     | Al     | Mn   | Si   | P    | S    | C    |
|---------------------------------|------|---------|--------|--------|--------|--------|------|------|------|------|------|
| 1.2709 10-45 μm                 | Bal. | 18.00 - | 8.50 - | 4.70 - | 0.50 - | 0.05 - | 0.10 | 0.10 | 0.01 | 0.01 | 0.02 |
| 1.2709 10-45 μπ                 | Ddl. | 19.00   | 9.50   | 5.20   | 0.80   | 0.15   | 0.10 | 0.10 | 0.01 | 0.01 | 0.03 |

| Mechanical<br>Data <sup>2</sup> | Formula Symbol and Unit | As-Built <sup>3</sup> | Heat Treated |  |  |
|---------------------------------|-------------------------|-----------------------|--------------|--|--|
| Tensile strength                | R <sub>m</sub> [MPa]    | 1150                  | 2025         |  |  |
| Offset yield strength           | R <sub>P0,2</sub> [MPa] | 940                   | 1945         |  |  |
| Elongation at break             | A [%]                   | 12                    | 5            |  |  |
| Reduction of area               | Z [%]                   | 55                    | 20           |  |  |
| Young's modulus                 | E [GPa]                 | 175                   | 195          |  |  |
| Vickers hardness                | HV10                    | 350                   | 580          |  |  |
| Roughness average               | Ra [μm]                 | 10                    | -            |  |  |
| Mean roughness depth            | Rz [μm]                 | 60                    | -            |  |  |

| N | Naterial Characteristics                   |
|---|--------------------------------------------|
|   | Martensitic hardenable                     |
|   | High toughness                             |
|   | High tensile strength                      |
|   | Good properties up to ca. 400 °C           |
|   |                                            |
|   |                                            |
|   | ypical Application Areas                   |
| _ | ypical Application Areas Injection molding |
|   |                                            |
|   | Injection molding                          |

<sup>1</sup> Maximum values, unless stated otherwise as a range

<sup>2</sup> Process conditions and parameters according to SLM Solutions' standards

<sup>3</sup> Rounded mean values of identified layer thicknesses and different orientations (elongations at break are not rounded)

## **Tool and Stainless Steel**

### H13 (1.2344)

H13 (1.2344) is a chromium containing martensitic tool steel. This material is resistant to thermal fatigue cracking and is used in tooling applications that require exceptional strength and toughness.

### **Chemical Composition (nominal), %**

| Element / Material <sup>1</sup> | Fe   | С      | Cr     | Mn     | Мо     | Ni+Cu | P    | S    | Si     | V      |
|---------------------------------|------|--------|--------|--------|--------|-------|------|------|--------|--------|
| 1112 10 45                      | Pal  | 0.32 - | 4.75 - | 0.20 - | 1.10 - | 0.75  | 0.03 | 0.03 | 0.80 - | 0.80 - |
| H13 10-45 μm                    | Bal. | 0.45   | 5.50   | 0.60   | 1.75   | 0.75  | 0.03 | 0.03 | 1.25   | 1.20   |

| Mechanical<br>Data <sup>2</sup> | Formula Symbol and Unit | As-Built <sup>3</sup> | Heat Treated |
|---------------------------------|-------------------------|-----------------------|--------------|
| Tensile strength                | R <sub>m</sub> [MPa]    | 1070                  | 1890         |
| Offset yield strength           | R <sub>p0,2</sub> [MPa] | 945                   | 1605         |
| Elongation at break             | A [%]                   | 8                     | 3            |
| Reduction of area               | Z [%]                   | 30                    | 5            |
| Young's modulus                 | E [GPa]                 | 150                   | 155          |
| Vickers hardness                | HV10                    | 355                   | -            |
| Surface roughness               | Ra [µm]                 | 5                     | -            |
| Surface roughness               | Rz[μm]                  | 45                    | -            |

# Material Characteristics High tensile strength Moderate corrosion resistance Resistant to thermal fatigue cracking Typical Application Areas Injection molding Tooling

### Invar 36®

The Fe-alloy Invar36° is a high-nickel content iron-based alloy that has a uniquely low coefficient of thermal expansion below its Curie temperature of 280 °C. Invar36° is used in components that require both high reliability and high dimensional stability over a wide range of temperatures.

### Chemical Composition (nominal), %

| Element / Material <sup>1</sup> | Fe   | Ni               | Cr   | Mn   | Si   | c    | Others | Total Others |
|---------------------------------|------|------------------|------|------|------|------|--------|--------------|
| Fe-Alloy Invar36® 10-45 μm      | Bal. | 35.00 -<br>37.00 | 0.50 | 0.50 | 0.50 | 0.10 | 0.20   | 0.50         |

| Mechanical<br>Data <sup>2</sup> | Formula Symbol and Unit | As-Built <sup>3</sup> | Heat Treated |
|---------------------------------|-------------------------|-----------------------|--------------|
| Tensile strength                | R <sub>m</sub> [MPa]    | 480                   | 480          |
| Offset yield strength           | R <sub>p0,2</sub> [MPa] | 385                   | 375          |
| Elongation at break             | A [%]                   | 33                    | 33           |
| Reduction of area               | Z [%]                   | 75                    | 75           |
| Young's modulus                 | E [GPa]                 | 135                   | 140          |
| Vickers hardness                | HV10                    | 150                   | -            |
| Surface roughness               | Ra [μm]                 | 15                    | -            |
| Surface roughness               | Rz [μm]                 | 80                    | -            |

## Low coefficient of thermal expansion below its Currie temp Excellent mechanical properties at cryogenic temperatures Low tendency to fatigue at low temperatures Typical Application Areas Aerospace Engine valves

Precision instruments

**Material Characteristics** 

- 1 Maximum values, unless stated otherwise as a range
- 2 Process conditions and parameters according to SLM Solutions' standards
- 3 Rounded mean values of identified layer thicknesses and different orientations (elongations at break are not rounded)